Mask-based Lensless Camera

Zhajiang university, Zhang yinger

Introduction of Lensless camera

- Size
- Weight

scene

- Cost
- Visual privacy

modulation

Challenge in Lensless Camera

- Lens focuses scene onto sensor
- Mesurement resembles scene

- Mesurement is highly multiplexed
- Does not resemble scene
- Needs reconstruction algorithms

Physical Model

$$b = Hv$$

$$\mathbf{b}(x,y) = crop[\mathbf{h}(x,y) * \mathbf{x}(x,y)]$$

Convolution Approximation:

Simpliy the calibration

$$\hat{v} = \arg\min_{v \ge 0} \frac{1}{2} ||b - Hv||_{2}^{2} + \tau ||\Psi v||_{1}$$

Our Study

 Work1: Text Detection and Recognition (Reconstruction)

 Work2: Hand Gestures Recognition in Videos (Reconstruction-free)

 Work3: Lensless imaging with two-branch fusion model (Reconstruction)

DiffuserCam Dataset

Work1: Framework

Work1: Reconstruction Quality

- Break through the limitations of resolution
- Supplemented by the judgment of the category
- Applicable to category type detection

Work1: Text Detection

Work1: Text Recognition

NCD

Factors:

- Word length
- Character size
- Light intensity
- Position
- Background complexity

IIIT 5K

Mode		Total	Edit Distance	Crwr
	Standard	1272	255	88.80%
Simple	Lensless	1272	704	71.78%
	Standard	1857	705	78.72%
Complex	Lensless	1857	2315	51.23%

Work2: Framework

Advantage:

- Reduce computational burdens
- Protect privacy
- Sample data, small data traffic

Work2: Dataset

Definition of dataset

Cambridge Hand Gesture

Train set: 2832 video

Test set: 780 video

Work2: Method

Index	Dataset	Model	Accuracy on Test Dataset
Exp1	Original video	3d-ResNet	99.36%
Exp2	ADMM-Reconstructed video	3d-ResNet	93.33%
Exp3	UNet-Reconstructed video	3d-ResNet	95.64%
Exp4	Lensless video	3d-ResNet	78.97%
Exp5	Lensless video	Raw3dNet	98.59%

Work2: Method

Table 1. Confuse matrix when using 3D-ResNet for lensless video classification.

Why SFE?

Table 2. The distribution of the most pertinent category for class 1. Row1 represents images of raw data, and Row2 represents feature maps produced by SFE.

Dataset	Class 1	Class 4	Class 7
Raw data	25	37	10
Feature map	60	6	6

Work2: Result

Table 3. Comparison of performances for 3D-ResNet/ Raw3dNet for lensless video; comparison for lensless video/reconstruction video/lensed video.

Index	Dataset	Model	Accuracy on Test Dataset
Exp1	Original video	3d-ResNet	99.36%
Exp2	ADMM-Reconstructed video	3d-ResNet	93.33%
Exp3	UNet-Reconstructed video	3d-ResNet	95.64%
Exp4	Lensless video	3d-ResNet	78.97%
Exp5	Lensless video	Raw3dNet	98.59%

Aperture

Diffuser Sensor Measurment

Table 4. Assessment for various down-sampling techniques and ratios.

Pixel Size	Compress Method	Accuracy on Test Dataset
(320,240)	None	98.59%
(100,75)	Resize	98.46%
(100,75)	Uniform sample	96.92%
(100,75)	Random sample	79.74%
(200,150)	Erase (25% reserved)	91.54%
(50,37)	Resize	90.13%

- Reconstruction-free method achives acc comparable to that of a lensed camera
- Reconstruction-free method outperforms reconstruction method
- · Hand gesture recognition is possible with a small amount of raw data

Work3: Framework

Work3: Why fusion?

State-of-the-art

Higher resolution Less details in edges

More details in edges Lower resolution

Work3: UNet-FC

Adapt to Multiplexing property

Work3: Result

Table 1. Average MSE, PSNR and SSIM metrics for each method on the test dataset.

Reconstruction	MSE	PSNR	SSIM
Le-ADMM	0.0312	12.89	0.6102
Le-ADMM-U	0.0065	22.88	0.8354
UNet	0.0081	20.20	0.7791
Ours	0.0035	25.61	0.8665

