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ABSTRACT
In most real-world large-scale online applications (e.g., e-commerce
or finance), customer acquisition is usually a multi-step conver-
sion process of audiences. For example, an 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → 𝑐𝑙𝑖𝑐𝑘 →
𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 process is usually performed of audiences for e-commerce
platforms. However, it is more difficult to acquire customers in
financial advertising (e.g., credit card advertising) than in tradi-
tional advertising. On the one hand, the audience multi-step con-
version path is longer, an 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → 𝑐𝑙𝑖𝑐𝑘 → 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 →
𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 → 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 process usually occurs during the audience
conversion for credit card business in financial advertising. On the
other hand, the positive feedback is sparser (class imbalance) step
by step, and it is difficult to obtain the final positive feedback due
to the delayed feedback of 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛. Therefore, it is necessary to
use the positive feedback information of the former step to alle-
viate the class imbalance of the latter step. Multi-task learning is
a typical solution in this direction. While considerable multi-task
efforts have been made in this direction, a long-standing challenge
is how to explicitly model the long-path sequential dependence
among audience multi-step conversions for improving the end-to-
end conversion. In this paper, we propose an Adaptive Information
Transfer Multi-task (AITM) framework, which models the sequen-
tial dependence among audience multi-step conversions via the
Adaptive Information Transfer (AIT) module. The AIT module can
adaptively learn what and how much information to transfer for
different conversion stages. Besides, by combining the Behavioral
Expectation Calibrator in the loss function, the AITM framework
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can yield more accurate end-to-end conversion identification. The
proposed framework is deployed in Meituan app, which utilizes
it to real-timely show a banner to the audience with a high end-
to-end conversion rate for Meituan Co-Branded Credit Cards. Of-
fline experimental results on both industrial and public real-world
datasets clearly demonstrate that the proposed framework achieves
significantly better performance compared with state-of-the-art
baselines. Besides, online experiments also demonstrate significant
improvement compared with existing online models. Furthermore,
we have released the source code of the proposed framework at
https://github.com/xidongbo/AITM.
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1 INTRODUCTION
Customer acquisition management can be considered the connec-
tion between advertising and customer relationship management to
acquire new customers1. With the explosive growth of e-commerce,
continuous and effective customer acquisition has become one of
the biggest challenges for real-world large-scale online applications.

In this paper, we focus on the customer acquisition task with
sequential dependence among audience multi-step conversions.
1https://en.wikipedia.org/wiki/Customer_acquisition_management
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Figure 1: There are five conversion steps with sequential de-
pendence from left to right, and five different conversion
stages of audiences from top to bottom. The lower the stage,
the more efficient the conversion. In our business, we usu-
ally hope audiences to complete the last two stages.

Typically, in the credit card business, the audience multi-step con-
version process usually needs to go through 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛→ 𝑐𝑙𝑖𝑐𝑘 →
𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 → 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 → 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 steps. These steps are de-
fined as follows:

- 𝒊𝒎𝒑𝒓𝒆𝒔𝒔 𝒊𝒐𝒏: In our business, the 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 means that the
advertising banner is shown to the audience selected according to
several ranking metrics, e.g., the Click-Through Rate (CTR).

- 𝒄𝒍 𝒊𝒄𝒌: The 𝑐𝑙𝑖𝑐𝑘 means that the shown banner is clicked by the
audience, and redirected to the application page.

- 𝒂𝒑𝒑𝒍 𝒊𝒄𝒂𝒕 𝒊𝒐𝒏: The 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 means that the audience has
filled in the application form and click the application button for a
credit card.

- 𝒂𝒑𝒑𝒓𝒐𝒗𝒂𝒍 : The 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 means that the credit of the audience
has been approved. In our system, this is also a real-time step.

- 𝒂𝒄𝒕 𝒊𝒗𝒂𝒕 𝒊𝒐𝒏: The 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is delayed feedback, and it means
that the audience has activated the credit card within a period of
time after 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 . Usually, we consider whether the audience has
activated the credit card within 14 days (i.e., activation in T+14).
The 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 feedback label is usually difficult to obtain due to
the time-consuming of card mailing and the delayed feedback of
audiences, so the class imbalance is more serious.

These conversion steps have sequential dependence, whichmeans
that only the former step occurs, the latter step may occur. Based
on this constraint, there are five different conversion stages of
audiences as shown in Figure 1. Everything else is illegal.

In industry and academia, multi-task learning is a typical solution
to improve the end-to-end conversion in the audience multi-step
conversion task. Recently, considerable efforts have been done to
model task relationships in multi-task learning. One idea is to con-
trol how Expert modules are shared across all tasks at the bottom
of the multi-task model [14, 16, 19], and Tower modules at the top
handle each task separately as shown in Figure 2 (a). However, the
Expert-Bottom pattern can only transfer shallow representations
among tasks, but in the network close to the output layer, it often
contains richer andmore useful representations [11, 29], which have
been proved to bring more gains [20]. Besides, the Expert-Bottom
pattern is not specially designed for tasks with sequential depen-
dence, so these models with the Expert-Bottom pattern can not

model the sequential dependence explicitly. Another idea is to trans-
fer probabilities in the output layers of different tasks [2, 3, 15, 23]
as shown in Figure 2 (b). Similarly, the Probability-Transfer pat-
tern can only transfer simple probability information via the scalar
product, but richer and more useful representations are ignored in
the vector space, which results in a great loss of gains. If any one of
the probabilities is not predicted accurately, multiple tasks will be
affected. Besides, the Probability-Transfer pattern is designed for
solving the non-end-to-end post-click conversion rate via training
on the entire space to relieve the sample selection bias problem,
and these models with Probability-Transfer pattern can not model
the sequential dependence well among audience multi-step con-
versions. Therefore, a long-standing challenge is how to model the
sequential dependence among audience multi-step conversions for
improving the end-to-end conversion.

Along this line, we propose an Adaptive Information Transfer
Multi-task (AITM) framework to model the sequential dependence
among audience multi-step conversions. Specifically, due to the
sequential dependence among audience multi-step conversions, the
former conversion step (task) can bring useful information to the
latter step (task). For example, if an audience has clicked the banner,
then he/she may apply for the credit card. Conversely, if an audi-
ence doesn’t click the banner, he/she certainly will not apply for the
credit card. Based on this, different conversion stages of different au-
diences need to transfer different information from the former step
to the latter step, and as mentioned above, the vector space close to
the output layer often contains richer and more useful information.
Therefore, we let the model adaptively transfer information in the
vector space close to the output layer via the Adaptive Information
Transfer (AIT) module. Another advantage of the AIT module is
that it can alleviate the class imbalance of the latter task with the
help of the information from the former task, which has richer
positive samples. Also, because of the sequential dependence, the
former task should have a higher end-to-end conversion probabil-
ity than the latter for the same audience. Therefore, we design a
Behavioral Expectation Calibrator in the loss function. On the one
hand, it makes the model results more satisfy the real production
constraint, on the other hand, it provides more accurate end-to-end
conversion identification. To summarize, the contributions of this
paper are threefold:

• The proposed AIT module can adaptively learn what and
how much information to transfer for different conversion
stages of different audiences for improving the performance
of multi-task learning with sequential dependence.

• Combining the Behavioral Expectation Calibrator in the loss
function, offline experimental results on both industrial and
public real-life datasets clearly demonstrate that the pro-
posed framework achieves significantly better performance
compared with state-of-the-art baselines.

• Online experiments also demonstrate significant improve-
ment compared with existing online models, and the source
code of the proposed framework has also been released.

2 RELATEDWORK
Multi-task learning (MTL) has led to successes in many applica-
tions of machine learning, from natural language processing and
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Figure 2: (a) Expert-Bottom pattern. (b) Probability-Transfer pattern. The 𝑦𝑜 is the non-end-to-end post-click conversion rate
and the multi-task loss function only acts on the 𝑦𝑡−1 and 𝑦𝑡 in the original paper. (c) The proposed Adaptive Information
Transfer Multi-task (AITM) framework. For simplicity, only two adjacent tasks are shown in the figure.

speech recognition to computer vision and drug discovery [17].
In this section, we present the main multi-task learning works re-
lated to our work in two-fold: the Expert-Bottom pattern and the
Probability-Transfer pattern.

As shown in Figure 2 (a), the main idea of the Expert-Bottom
pattern is to control how Expert modules are shared across all tasks
at the bottom of the multi-task model [14, 16, 19], and the Tower
modules at the top handle each task separately. Since complex
problems may contain many sub-problems each requiring differ-
ent experts [1], some Mixture-of-Experts (MoE) models have been
proposed one after another [1, 8, 18]. Inspired by the idea, Ma et al.
introduced the MoE to the multi-task learning and proposed the
Multi-gate Mixture-of-Experts (MMoE) [14] model by the gating
networks assembling the experts for different tasks. Zhao et al.
explored a variety of soft-parameter sharing techniques such as
MMoE to efficiently optimize for multiple ranking objectives for
Video recommendation [31]. Tang et al. proposed a Progressive
Layered Extraction (PLE) [19] model to separate task-shared ex-
perts and task-specific experts explicitly. The Mixture of Sequential
Experts (MoSE) model [16] has also been proposed to model sequen-
tial user behaviors in multi-task learning. However, the top Tower
modules, which often contain richer and more useful information,
can not help the tasks to improve each other due to there is no
information exchange among them.

Another idea to model task relationships in multi-task learning
is to transfer probabilities in the output layers of different tasks
[2, 3, 15, 23] as shown in Figure 2 (b). Ma et al. proposed an Entire
Space Multi-task Model (ESMM) [15] to transfer probabilities in
the output layers by post-impression click-through rate (CTR) mul-
tiplying post-click conversion rate (CVR) equals post-impression
click-through&conversion rate (CTCVR). Further, more tasks are
decomposed for probability transfer in 𝐸𝑆𝑀2 [23]. TheNeuralMulti-
Task Recommendation (NMTR) [2, 3] has also been proposed to
extend the Neural Collaborative Filtering (NCF) [7] to multi-task
learning and relate the model prediction probability of each task

in a cascaded manner. However, as mentioned in Section 1, the
Probability-Transfer pattern can only transfer simple probability
information via the scalar product, but richer and more useful rep-
resentations are ignored in the vector space, which results in a
great loss. Besides, if any one of the probabilities is not predicted
accurately, multiple tasks will be affected.

Other efforts have also utilized the tensor factorization [28],
tensor normal priors [13], attention mechanism [12, 30], and so on
to solve the multi-task learning. Nevertheless, these above efforts
are not specially designed for tasks with sequential dependence,
and they can not model the sequential dependence well among
audience multi-step conversions.

3 THE MTL RANKING SYSTEM IN MEITUAN
APP

In this section, we give an overview of the MTL ranking system in
Meituan app. As shown in Figure 3, in our credit card business, we
model four tasks except for the passive 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 step. Among
them, the 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 and 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 are the main tasks, and the
𝑐𝑙𝑖𝑐𝑘 and 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 are the auxiliary tasks. That is because if the
audience has only completed the 𝑐𝑙𝑖𝑐𝑘 and 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 steps, but
the 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 step has not been completed, then it will cause a waste
of resources (e.g., the computing and traffic resources). Because
different audiences have different values to different businesses,
the traffic that is useless to the credit card business may be useful
to other businesses. For this kind of audience, we might as well
give the traffic to other businesses that may promote the audience
conversion. Therefore, we mainly focus on the last two end-to-end
conversion tasks, i.e., 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛→ 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 and 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛→
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛. Besides, because the last two tasks have fewer posi-
tive samples and the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is delayed feedback, the first two
auxiliary tasks with more positive samples can alleviate the class
imbalance problem via the Adaptive Information Transfer module.

Meituan Co-Branded Credit Cards are issued in cooperation
with different banks, and different banks are in different stages of
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business development, so they have different requirements for the
𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 and 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛. Start-up banks often want to issue more
credit cards to quickly occupy the market, while mature banks want
to increase the activation rate to achieve rapid profits. Therefore,
there is a selector in our system to output different conversion
objectives for different banks. The multi-task framework can deal
with different business requirements well.

Besides, because different businesses in Meituan all need the
traffic to acquire customers for their own business, and the sensi-
tivities of different audiences to different businesses are different,
so we can not simply divide the traffic into different businesses.
We need a ranking mechanism to maximize the overall gain. The
multi-business ranking system ranks the different business scores
according to the Equation:

𝑠𝑐𝑜𝑟𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑦, (1)

where 𝑦 is the predicted conversion probability for each business,
and the𝑤𝑒𝑖𝑔ℎ𝑡 includes the value of the audience itself, the value of
the business itself, and the value of the audience to the business. The
business banner with the highest score is shown to the audience.

4 METHODOLOGY
In this section, we first formulate the problem, then we present the
details of the proposed framework AITM as shown in Figure 2 (c).

4.1 Problem Formulation
Given the input feature vector 𝒙 , assuming the audience needs 𝑇
steps to complete the final conversion after 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (In Figure
1, 𝑇 = 4). In each conversion step 𝑡 , if the audience completes the
conversion step, the label 𝑦𝑡 is 1, otherwise it is 0. The sequential
dependence means that 𝑦1 ≥ 𝑦2 ≥ · · · ≥ 𝑦𝑇 (𝑦𝑡 ∈ {0, 1}, 𝑡 =

1, 2, · · · ,𝑇 ). The multi-task framework needs to predict the end-to-
end conversion probability 𝑦𝑡 of each conversion step 𝑡 based on
the input features 𝒙 :

𝑦𝑡 = 𝑝 (𝑦1 = 1, 𝑦2 = 1, · · · , 𝑦𝑡 = 1|𝒙) . (2)

4.2 Adaptive Information Transfer Multi-task
(AITM) framework

As shown in Figure 2 (c), given the input feature vector 𝒙 , we
embed each entry 𝑥𝑖 (𝑥𝑖 ∈ 𝒙 , 1 ≤ 𝑖 ≤ |𝒙 |) to a low dimension
dense vector representation 𝒗𝑖 ∈ R𝑑 , where 𝑑 is the dimension of
embedding vectors. The output of the Shared Embedding module
is the concatenation of all embedding vectors:

𝒗 = [𝒗1; 𝒗2; · · · ; 𝒗 |𝒙 |], (3)

where [·; ·] denotes the concatenation of two vectors. By sharing
the same embedding vectors among all tasks, on the one hand, the
framework could learn the embedding vectors with rich positive
samples of the former tasks to share information and alleviate the
class imbalance of the latter tasks, and reduce the model parameters
on the other hand.

Given𝑇 tasks, the output of the Tower of each task 𝑡 (1 ≤ 𝑡 ≤ 𝑇 )
is defined as:

𝒒𝑡 = 𝑓𝑡 (𝒗), (4)

where the 𝑓𝑡 (·) function is the Tower, 𝒒𝑡 ∈ R𝑘 and 𝑘 is the output
dimension of the Tower. It should be mentioned that designing a
different Tower is not the focus of this paper as we aim at designing
an Adaptive Information Transfer module to model the sequential
dependence. In fact, our approach is a general framework, and
any advanced models (e.g., NFM [6], DeepFM [5], AFM [27], and
even the sequence models NHFM [26], DIFM [24]) can be easily
integrated into our framework to act as the Tower, making the
proposed AITM general and flexible.

For two adjacent tasks 𝑡 − 1 and 𝑡 , the output of the AIT module
of the task 𝑡 is computed as:

𝒛𝑡 = 𝐴𝐼𝑇 (𝒑𝑡−1, 𝒒𝑡 ), (5)
𝑤ℎ𝑒𝑟𝑒 𝒑𝑡−1 = 𝑔𝑡−1 (𝒛𝑡−1), (6)

𝒛𝑡−1 ∈ R𝑘 is the output of the AIT module of the task 𝑡 − 1, 𝑔𝑡−1 (·)
is the function to learn what information to transfer between the
tasks 𝑡 − 1 and 𝑡 , and 𝒑𝑡−1 ∈ R𝑘 is the learned transfer information.



The AIT module is designed to adaptively allocate the weights
of the transferred information 𝒑𝑡−1 and original information 𝒒𝑡 :

𝒛𝑡 =
∑︁

𝒖∈{𝒑𝑡−1,𝒒𝑡 }
𝑤𝑢ℎ1 (𝒖), (7)

where𝑤𝑢 is the weight which is formulated as:

𝑤𝑢 =
𝑒𝑥𝑝 (𝑤̂𝑢 )∑
𝑢 𝑒𝑥𝑝 (𝑤̂𝑢 )

, 𝑤̂𝑢 =
< ℎ2 (𝒖), ℎ3 (𝒖) >√

𝑘
, (8)

where < · , · > represents the dot product.ℎ1 (·),ℎ2 (·), andℎ3 (·) rep-
resent the feed-forward networks to project the input information
to one new vector representation. There are lots of ways to design
ℎ1 (·), ℎ2 (·), and ℎ3 (·). In this paper, we use a simple single-layer
MLP (Multi-Layer Perceptron) [4] as ℎ1 (·), ℎ2 (·), and ℎ3 (·). The
idea of this kind of attention mechanism is similar to self-attention
[22], the ℎ1 (·), ℎ2 (·) and, ℎ3 (·) first learn Value, Query, Key from
the same input 𝒖, respectively. Then, we compute the similarity
between Query (ℎ2 (·)) and Key (ℎ3 (·)) according to Equation (8).
Finally, the Value (ℎ1 (·)) is weighted via the similarity according to
Equation 7. This kind of attention mechanism has been proved to
be more effective in the previous works [24, 26, 32].

For the first task without the former task, the out of the AIT
module is initialized to:

𝒛1 = 𝒒1 . (9)
The prediction probability of each task 𝑡 is:

𝑦𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃 (𝒛𝑡 )), (10)
where the MLP is used to project the 𝒛𝑡 to the output space.

4.3 Behavioral Expectation Calibrator and
Joint Opratortimization for MTL

For classification tasks, we need to minimize the cross-entropy loss
of all tasks:

L𝑐𝑒 (𝜃 ) = − 1
𝑁

𝑇∑︁
𝑡=1

𝑁∑︁
(𝒙,𝑦𝑡 )∈D

( (𝑦𝑡 log 𝑦̂𝑡 + (1 − 𝑦𝑡 ) log(1 − 𝑦̂𝑡 )), (11)

where 𝑁 is the number of samples in the entire sample space D, 𝑦𝑡
is the label of the 𝑡-th task and 𝜃 is the parameter set in the MTL
framework.

Besides, because of the sequential dependence, the former task
should have a higher end-to-end conversion probability than the
latter for the same audience, i.e., 𝑦𝑡−1 ≥ 𝑦𝑡 . We design a Behavioral
Expectation Calibrator to minimize the following objective. On
the one hand, it makes the model results more satisfy the real
production constraint, on the other hand, it provides more accurate
end-to-end conversion identification:

L𝑙𝑐 (𝜃 ) =
1
𝑁

𝑇∑︁
𝑡=2

𝑁∑︁
𝒙∈D

𝑚𝑎𝑥 (𝑦𝑡 − 𝑦𝑡−1, 0) . (12)

If 𝑦𝑡 > 𝑦𝑡−1, the L𝑙𝑐 (𝜃 ) will output a positive penalty term, other-
wise output 0.

The final loss function L(𝜃 ) of the AITM combines the two
components to a unified multi-task learning framework:

L(𝜃 ) = L𝑐𝑒 (𝜃 ) + 𝛼L𝑙𝑐 (𝜃 ), (13)
where 𝛼 controls the strength of the Behavioral Expectation Cali-
brator component.

Table 1: Summary statistics for the datasets. “%Positive” rep-
resents the percentage of positive samples in the train set
over each task.

Dataset #Task #Train #Validation #Test %Positive(%)
Industrial 4 20M 3M 26M 23.29/1.84/1.30/1.00
Public 2 38M 4.2M 43M 3.89/0.02

The framework is implemented using TensorFlow2 and trained
through stochastic gradient descent over shuffledmini-batches with
the Adam [10] update rule.

5 EXPERIMENTS
In this section, we perform experiments to evaluate the proposed
framework against various baselines on both industrial and public
real-world datasets. We first introduce the datasets, evaluation pro-
tocol, and baseline methods. Finally, we present our experimental
results and analysis.

5.1 Datasets
• Industrial dataset: The industrial dataset contains all sam-
ples that are shown a banner of Meituan Co-Branded Credit
Cards over a continuous period of time. We divide the train-
ing, validation, and test sets in chronological order.We down-
sample the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 negative samples for each bank to
keep the proportion of positive samples to be 1% overall
except for the test set. Because it is necessary to evaluate
the performance of the model on the test set that meets
the real data distribution. Four tasks (i.e., 𝑐𝑙𝑖𝑐𝑘 , 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛,
𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 , 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛) are contained in the dataset.

• Public dataset: The public dataset is the Ali-CCP (Alibaba
Click and Conversion Prediction) [15] dataset3. We use all
the single-valued categorical features. Two tasks (i.e., 𝑐𝑙𝑖𝑐𝑘 ,
𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) are contained in the dataset. We randomly take
10% of the train set as the validation set to verify the conver-
gence of all models.

For these two datasets, we filter the features whose frequency less
than 10. The statistics of these datasets are shown in Table 1.

5.2 Evaluation Protocol
In the offline experiments, to evaluate the performance of the pro-
posed AITM framework and the baselines, we follow the existing
works [14, 15, 19, 23] to use the standard metric: AUC (Area Under
ROC). In ranking tasks, AUC is a widely used metric to evaluate
the ranking ability. The mean and standard deviation (std) are re-
ported over five runs with different random seeds. In the online
A/B test, we use the end-to-end conversion rate to evaluate the
performance more intuitively. On all datasets, we report the AUC
of end-to-end tasks, which are directly optimized in their loss func-
tions. Besides, we only report the metrics on the focused main tasks
(i.e., the 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 and 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 tasks) over the industrial dataset.

2https://www.tensorflow.org/
3https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408
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Table 2: The AUC performance (mean±std) on the industrial and public datasets. The Gainmeans themeanAUC improvement
comparedwith the LightGBM.Underlined results indicate the best baselines over each task. “*” indicates that the improvement
of the proposed AITM is statistically significant compared with the best baselines at p-value < 0.05 over paired samples t-test,
and “**” indicates that the p-value < 0.01.

Model
Industrial dataset Public dataset

𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 AUC 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 AUC Gain 𝑐𝑙𝑖𝑐𝑘 AUC 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 AUC Gain
LightGBM 0.8392±0.0011 0.8536±0.0035 - - 0.5837±0.0005 0.5870±0.0038 - -

MLP 0.8410±0.0010 0.8602±0.0014 +0.0018 +0.0066 0.6048±0.0013 0.5806±0.0035 +0.0211 -0.0064
ESMM 0.8443±0.0028 0.8691±0.0025 +0.0051 +0.0155 0.6022±0.0020 0.6291±0.0061 +0.0185 +0.0421
OMoE 0.8438±0.0022 0.8714±0.0009 +0.0046 +0.0178 0.6049±0.0020 0.6405±0.0041 +0.0212 +0.0535
MMoE 0.8444±0.0026 0.8705±0.0009 +0.0052 +0.0169 0.6047±0.0017 0.6420±0.0031 +0.0210 +0.0550
PLE 0.8518±0.0006 0.8731±0.0016 +0.0126 +0.0195 0.6039±0.0014 0.6417±0.0013 +0.0202 +0.0547
AITM 0.8534±0.0011** 0.8770±0.0005* +0.0142 +0.0234 0.6043±0.0016 0.6525±0.0024** +0.0206 +0.0655

5.3 Baseline Methods
We compare the proposed method with the following competitive
and mainstream models:

• LightGBM [9]: LightGBM is a gradient boosting framework
that uses tree based learning algorithms. LightGBM is being
widely-used in many winning solutions of machine learning
competitions4.

• MLP [4]: We use the base structure of our AITM framework
as the single task model. It is a Multi-Layer Perceptron.

• ESMM [15, 23]: The ESMM and 𝐸𝑆𝑀2 with Probability-
Transfer pattern are designed for solving the non-end-to-end
post-click conversion rate via training on the entire space to
relieve the sample selection bias problem.

• OMoE [14]: The OMoE with Expert-Bottom pattern inte-
grates experts via sharing one gate among all tasks.

• MMoE [14]: The MMoE with Expert-Bottom pattern is de-
signed to integrate experts via multiple gates in the Gate
Control as shown in Figure 2 (a).

• PLE [19]: The Progressive Layered Extraction (PLE) with
Expert-Bottom pattern separates task-shared experts and
task-specific experts explicitly. This is the state-of-the-art
method under different task correlations.

5.4 Performance Comparison
5.4.1 Offline Results. In this subsection, we report the AUC
scores and gains of all models on the offline test set. As mentioned
in Section 3, we only focus on the last two main end-to-end conver-
sion tasks on the industrial dataset. The results of 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 AUC
and 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 AUC are shown in Table 2. From these results, we
have the following insightful observations:

• The MLP obtains 0.0018 and 0.0066 AUC gains on two tasks,
respectively, compared with the tree-based model LightGBM,
which indicates the fitting ability of neural network models
on large-scale datasets.

• Compared with the single-task models LightGBM and MLP,
the multi-task models ESMM, OMoE, MMoE, PLE and AITM
obtain more gains by introducing the multi-task information
in the neural networks.

4https://github.com/microsoft/LightGBM

• The Probability-Transfer pattern-based ESMM achieves a
relatively small improvement due to only simple probability
information is transferred between adjacent tasks.

• The Expert-Bottom pattern-based models obtain further per-
formance improvement by controlling the shared informa-
tion among different tasks. However, neither of the one-gate
and multi-gate models is a clear winner on this dataset.

• The PLE obtains the best performance among these baselines
on the two tasks via separating task-shared experts and task-
specific experts explicitly.

• Our AITM achieves significant improvement compared with
various state-of-the-art baseline models, which shows the
AIT module is effective and could bring more gains on se-
quential dependence tasks.

The results on the public dataset are also shown in Table 2. From
these results, we have the following findings, which are not the
same as above:

• Serious class imbalance on the 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 task (the proportion
of positive samples is 0.02% as shown in Table 1) leads to
the poor performance of the two single-task models, i.e., the
LightGBM and MLP.

• The MLP obtains similar performance improvement com-
pared with multi-task models on the 𝑐𝑙𝑖𝑐𝑘 task. In other
words, the multi-task models seem to have no significant
improvement on the 𝑐𝑙𝑖𝑐𝑘 task. This may be because there
are only two tasks in this dataset, and no other task can pro-
vide more information before the 𝑐𝑙𝑖𝑐𝑘 task. 3.89% positive
samples in the 𝑐𝑙𝑖𝑐𝑘 task are relatively abundant as shown
in Table 1.

• The Expert-Bottom pattern shows better performance than
the Probability-Transfer pattern on the 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 task with
serious class imbalance. Besides, our AITM can explicitly use
the rich positive sample information of the former 𝑐𝑙𝑖𝑐𝑘 task
to alleviate the class imbalance of the current 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 task
and achieve the best performance. On the other hand, it also
shows the generalization ability of the proposed AITM.

5.4.2 Online Results. The proposed framework is trained of-
fline and regularly updated. The pre-trained model is deployed in
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Figure 4: The t-SNE visualization at different conversion score rankings of the original information 𝒒𝑡 , transferred plus origi-
nal information 𝒑𝑡−1 + 𝒒𝑡 and the information 𝒛𝑡 learned by the AIT on the activation task.

Table 3: Online A/B test results.

Model
Gain

𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

MLP vs LightGBM +16.95% +17.55%
AITM vs MLP +25.00% +42.11%

Meituan app by the TF Serving5, to real-timely show a banner to
the audience with a high end-to-end 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 or 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 con-
version rate for Meituan Co-Branded Credit Cards. Due to business
competition, user experience, and delayed feedback (T+14) of the
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 task, we can not deploy all models to the online system.
With the development of our business, we have successively de-
ployed LightGBM, MLP, and AITM to the online system. These
models serve tens of millions of traffic every day. A/B test is carried
out for every two models with the same traffic for two consecutive
weeks (It takes four weeks for all feedback to be received for every
two models). The online A/B test results are shown in Table 3. Com-
pared with LightGBM, the 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 conversion rate
of MLP increases by 16.95% and the 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 con-
version rate increases by 17.55%. The AITM further increases the
𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 →𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 and 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 conversion
rate by 25.00%, 42.11% compared with MLP, respectively. Now, the
AITM has provided real-time prediction for all traffic in our system.
5https://github.com/tensorflow/serving

Besides, our system is computationally efficient, and the TP999,
TP9999 of the real-time prediction is less than 20ms, 30ms in the
system every day, respectively, which can meet the requirement of
real-time solutions.

5.5 Ablation Study
In this subsection, we perform the ablation study of the AIT module
and the number of the tasks.

Firstly, we randomly sample 500 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 positive and nega-
tive samples in the test set, respectively. The 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 prediction
scores of positive samples are ranked in descending order, while
those of negative samples are in ascending order. We plot the origi-
nal information 𝒒𝑡 , transferred plus original information 𝒑𝑡−1 + 𝒒𝑡
and the information 𝒛𝑡 learned by the AIT on the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 task
in Figure 4 via the t-SNE (t-distributed Stochastic Neighbor Em-
bedding [21]). From the visualization, we can obtain the following
inspiring observations (Similar results can also be observed in the
𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 task, we list it in the appendix due to the space limitation):

• When the prediction scores of the AITM are very confident
(see the Top 0%−50% in Figure 4), the three components (i.e.,
the Original, Transferred+Original, and AIT) can accurately
identify positive and negative samples.

• With the confidence of the prediction scores of the AITM de-
creases (see the Top 50% − 100% in Figure 4), it is difficult to
identify positive and negative samples only using the origi-
nal information. The transferred plus original information
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improves the performance compared with only the original
information, which indicates that information transfer could
improve the performance of tasks with sequential depen-
dence in multi-task learning.

• The AIT module could adaptively learn what and how much
information to transfer among audience multi-step conver-
sions via the multi-task framework, so the AIT further im-
proves the performance compared with the transferred plus
original information under low confidence.

Besides, we study the impact of the number of tasks as shown in Fig-
ure 5 (d).We perform the experiments over tasks𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 ),
𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 →𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛,𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛→𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 →𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛, 𝑐𝑙𝑖𝑐𝑘
→ 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 → 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 → 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛, respectively. More tasks
with more positive sample information and transferred information
greatly improve the performance.

5.6 Case Study
In order to understand how much information the AIT module
transfers for different conversion stages, we extract the weight
𝑤𝑢 in Equation (8) of the transferred information 𝒑𝑡−1 and show

it in Figure 6. We first randomly sample 40, 000 test samples. In
Figure 6 (a), we divide the samples into three groups according to
the 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 labels of 00/10/11, and rank the top
500 samples in each group according to the logloss of each sample
in ascending order. Figure 6 (b) is the same except for the tasks
are 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 and 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛. From Figure 6, we have the following
interesting findings:

• Because when the label of the former task is 0, the label of
the latter task must also be 0, we can see that at this time the
former task transfers very strong information to the latter
task (the weight is close to 1 of the red lines in Figure 6).

• When the label of the former task is 1, the label of the latter
task is uncertain. When the label of the latter task is 1, there
is little information is transferred from the former task (the
green lines in Figure 6), which indicates that the latter task
mainly identifies positive samples based on the task itself.

• When the label of the former task is 1, with the prediction
becomes worse (the logloss rankings from 0%-25% to 75%-
100%), the weight of the transferred information gradually
increases (the blue and green lines in Figure 6), which indi-
cates that the prediction result of the latter task is misled by
the former task.

From the above results, we could see that the AIT module can learn
how much information to transfer between two adjacent tasks.

5.7 Hype-parameter Study
In order to study the impact of hype-parameters and the stability
on the performance of the AITM, we perform the hyper-parameter
study.

Firstly, considering the embedding dimension 𝑑 , we vary the em-
bedding dimension as [1, 5, 10, 16, 32, 64, 128], the results are shown
in Figure 5 (a). We can see that the performance of the AITM is
not very sensitive to the embedding dimension. The embedding
dimension is related to the complexity and capability of the model.
Usually, smaller embedding dimension may fit the data distribution
insufficiently, especially if the numbers of samples and features are
large. While a larger embedding dimension increases the complex-
ity of the model and requires more samples and features to fit, a
proper embedding dimension can achieve the best performance



[25]. Making a trade-off between model complexity and capability,
we finally set 𝑑 = 5 as the embedding dimension in all experiments.

Secondly, we study the impact of the strength 𝛼 of the Behavioral
Expectation Calibrator as shown in Figure 5 (b). There are perfor-
mance fluctuations (the seesaw phenomenon) among four different
tasks. However, the Behavioral Expectation Calibrator brings the
improvement of the overall performance. We finally set 𝛼 = 0.6 as
the weight in all the experiments.

Thirdly, we study the impact of the proportion 𝜆 of positive sam-
ples in the industrial dataset. We downsample the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 neg-
ative samples to keep the proportion 𝜆 of positive samples to be
[0.025%, 0.05%, 0.125%, 0.25%, 0.5%, 1%, 2.5%, 5%] in the train set, re-
spectively, and report the AUC performance on the entire test set
in Figure 5 (c). On the one hand, if audiences do not apply for the
credit card at present, it does not mean that they will not apply for
the card in the future, so we can not use too many negative samples
for training. On the other hand, it can be seen that when 𝜆 is too
large, the performance of the model drops sharply. This is because
too much 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 negative sample information is lost. Besides,
excessive downsampling of the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 negative samples also
leads to the loss of 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 positive samples. We finally down-
sample the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 negative samples to keep the proportion 𝜆

of positive samples to be 1%. This setting is applied to all models.
Combining the performance in Table 2 and Figure 5, we can see

that even without the best parameters, the AITM is still superior to
other baselines in most cases. In other words, the performance of
the AITM stays stable in a large range of values of hyper-parameters
and is not very sensitive to the hyper-parameters.

6 CONCLUSION
In this paper, we proposed an Adaptive Information Transfer Multi-
task (AITM) framework to model the sequential dependence among
audience multi-step conversions. The proposed Adaptive Informa-
tion Transfer (AIT) module combining the Behavioral Expectation
Calibrator in the loss function could learn what and how much in-
formation to transfer for different conversion stages for improving
the performance of multi-task learning with sequential dependence.
Offline and online experimental results demonstrate significant
improvement compared with state-of-the-art baseline models.
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Figure 7: The t-SNE visualization at different conversion score rankings of the original information 𝒒𝑡 , transferred plus origi-
nal information 𝒑𝑡−1 + 𝒒𝑡 and the information 𝒛𝑡 learned by the AIT on the approval task.

Table 4: The summary of the hyper-parameters in multi-
task models, which includes ESMM, OMoE, MMoE, PLE and
AITM. The 𝑇 is the number of tasks. Except for these listed,
other parts of these models that involve MLP are all single-
layer.

Hyper-parameter Value
Optimizer Adam
Batch size 2000

Learning rate 1e-3
L2 regularization 1e-6

Embedding dimension 5
Dimensions of layers in the MLP- [64,32,16]×2×𝑇
Expert of Expert-Bottom pattern
Dimensions of layers in the MLP- [128,64,32]×𝑇

Tower of Probability-Transfer pattern
Dropout rate in each layers [0.1,0.3,0.3]
Activation function in MLP Relu

A APPENDIX
A.1 Reproducibility Information
For the LightGBMmodel, the learning rate, feature fraction, bagging
fraction, bagging frequency, max bin, number of leaves, boosting

type are set as 0.1, 0.9, 0.7, 5, 2000, 70, gbdt, respectively, which are
chosen according to the grid search on the validation set.

For the neural network-basedmodels, to verify the generalization
ability of different models and compare them fairly, different neural
network-based models use the same common hyper-parameters
on two datasets considering the empirical values and computa-
tional efficiency. For the industrial dataset, we downsample the
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 negative samples to keep the proportion 𝜆 of positive
samples at 1% except for the test set. For both industrial and public
datasets, we use: embedding dimension 𝑑 = 5, the output dimension
of the Tower is 𝑘 = 32, the strength of the Behavioral Expectation
Calibrator is 𝛼 = 0.6. We only fine-tune the hyper-parameters of 𝑑 ,
𝛼 , and 𝜆 according to grid search on the validation set. Besides, the
Tower 𝑓𝑡 (·) is a three-layer MLP with dimension [128, 64, 32], the
𝑔𝑡 (·), ℎ1 (·), ℎ2 (·) and ℎ3 (·) are all single-layer MLP with dimen-
sion 32. For a fair comparison, we try our best to ensure that the
main architecture of different multi-task models is consistent. The
summary of different multi-task models is shown in Table 4. We
conduct experiments of all models with NVIDIA Tesla V100 GPU
with 16G memory.

A.2 More Experiments
These inspiring observations, which are described in Subsection
5.5 and shown in Figure 4 on the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 task, can also be
observed on the 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 task. Firstly, we randomly sample 500
𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 positive and negative samples in the test set, respectively.



The 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 prediction scores of positive samples are ranked in
descending order, while those of negative samples are in ascending
order. Then, we plot the original information 𝒒𝑡 , transferred plus
original information 𝒑𝑡−1 + 𝒒𝑡 and the information 𝒛𝑡 learned by
the AIT on the 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 task via the t-SNE. We show the results in
Figure 7.

A.3 Data Collection and Privacy Protection
The industrial dataset contains all samples that are shown a banner
of Meituan Co-Branded Credit Cards over a continuous period of
time. In the traditional credit card business, the 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 step is

usually not real-time. However, in our online credit card applica-
tion, Meituan and the card-issuing bank make two-level real-time
risk judgment, which makes the 𝑎𝑝𝑝𝑟𝑜𝑣𝑎𝑙 step is almost real-time.
Besides, the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 step requires the user to have received the
mailed credit card and go to the bank to activate it or make an
appointment with a salesman to activate it at home. Therefore,
the samples used are shown a banner at least 14 days ago, so as
to ensure the accuracy of the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 label. The features used
include context features and user statistics features. We don’t use
any features that can locate specific users and involve user privacy.
The accurate end-to-end conversion identification can disturb users
as little as possible and improve the user experience.
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